FY 2017 Vehicle Technologies Program-Wide Funding Opportunity Announcement Selections DE-FOA-0001629

Applicant	Location (city, state)	Project Title/Description	Federal Share			
Battery500 Seedling Projects – Phase 1 awards (Area of Interest 1)						
Through the Advanced Vehicle Power Technology Alliance between the Department of Energy and the Department of the Army, the Army is contributing \$1.0 million towards these projects.						
University of Maryland: College Park	College Park, MD	Research innovative iron-based materials for high energy cathodes for high energy lithium ion battery technologies.	\$400,000			
Lawrence Berkeley National Laboratory	Berkeley, CA	Research thick cathodes using freeze casting methods for solid-state lithium batteries.	\$400,000			
Penn State University Park	University Park, PA	Research multifunctional Li-ion conducting interfacial materials that enable highperformance lithium metal anodes.	\$399,194			
Mercedes-Benz Research & Development North America, Inc.	Redford, MI	Research a scalable synthesis to enable very thin coatings on solid state electrolyte membranes to enable high performance Li-Sulfur Battery.	\$400,000			
University of Maryland: College Park	College Park, MD	Using 3D printed, low tortuosity frameworks, develop solid state Li-ion batteries.	\$400,000			
General Motors LLC	Pontiac, MI	Design, engineer, develop, and integrate pouch- format cells for lithium-sulfur batteries to achieve high energy density and long cycle life.	\$400,000			
University of Pittsburgh	Pittsburgh, PA	Research sulfur electrodes utilizing lithium ion conductor (LIC) coatings for high energy density advanced lithium-sulfur (Li-S) batteries.	\$400,000			
Cornell University	Ithaca, NY	Research highly loaded sulfur cathodes and conductive carbon coated separators that enable high energy batteries.	\$360,000			
University of Maryland: College Park	College Park, MD	Research advanced electrolytes to limit dendrite growth in lithium-metal cells.	\$400,000			
Texas A&M Engineering Experiment Station	College Station, TX	Utilize an analytical and experimental approach to examine the interface between solid state electrolytes and lithium-metal anodes and identify potential methods for mitigating dendrite growth.	\$400,000			
Navitas Advanced Solutions Group, LLC	Ann Arbor, MI	Research a solvent-free process to fabricate all- solid Li batteries.	\$400,000			

Applicant	Location (city, state)	Project Title/Description	Federal Share			
Wayne State University	Detroit, MI	Research novel full-cell, ultra high-energy Li- metal batteries based on 3-dimensional architectures.	\$225,000			
Oregon State University	Corvallis, OR	Research and develop a new process to produce Li2S@graphene composite cathodes to inhibit polysulfides to enhance cycle life.	\$353,500			
SUNY University at Stony Brook	Stony Brook, NY	Research li-sulfur batteries using a novel sulfur rich nanosheet composite cathode.	\$400,000			
University of Houston	Houston, TX	Research high-energy solid-state lithium batteries with organic cathode materials.	\$400,000			
	ICME Low Cost Carbon Fiber (Area of Interest 2)					
University of Virginia	Charlottesville, VA	Research multiscale integrated computational approach to assess new carbon fiber precursors. Reactive Force Field and coarse-grained molecular dynamics simulations of conversion processes will help identify promising precursors.	\$3,000,000			
Western Research Institute	Laramie, WY	Using state-of-the-art oil and polymer analytics, DFT aided molecular dynamics modeling, and machine learning, the Consortium will develop advanced computational tools for low cost carbon fiber from a variety of feed stocks.	\$3,745,413			
Emission Control Strategies for Advanced Combustion Engines (Area of Interest 3)						
University of Houston	Houston, TX	Research and develop a multi-functional, lean catalyzed trap for low temperature combustion engines.	\$2,099,998			
University of Kentucky	Lexington, KY	Research and develop novel adsorber technology to address hydrocarbon and nitrogen oxide emissions for Low Temperature Gasoline Applications.	\$2,098,530			
EEMS R&D projects (Area of Interest 4)						
Clemson University	Clemson, SC	Create anticipative and predictive vehicle controls algorithms and develop novel vehicle-in-the-loop testbed to show energy savings of 10% in mixed traffic.	\$1,159,987			
Virginia Polytechnic Institute and State University	Blacksburg, VA	Develop a novel bi-level (traffic and vehicle) controller that integrates eco-routing, speed harmonization, and vehicle dynamics control to achieve 20% efficiency improvement in combined city/highway traffic.	\$1,507,197			
University of California: Riverside	Riverside, CA	Evaluate energy opportunities from connected, automated, shared mobility services through	\$1,094,578			

Applicant	Location (city, state)	Project Title/Description	Federal Share
		data collection and energy intensity and modal	
		activity modeling in the state of California.	